NEUROLAKE++

The cognitive foundation for agent memory, multimodal RAG, and long-term adaptive knowledge

🧠 Cognitive Spec – Layer by Layer

NeuroLake++ is not just a file format, but a foundation for cognitive tooling, RAG agents, and long-term adaptive memory.

📜 Global Manifest File (manifest.json)

Describes all contents in a "NeuroLake Object Group" (e.g., an S3 prefix or ZIP archive), defines modality coverage, versioning, and affordances.

manifest.json
{
  "neuro_lake_version": "0.4.1",
  "description": "Memory & knowledge corpus for legal assistant GPT agent",
  "modality_map": {
    "text": true,
    "image": true,
    "pdf": true,
    "audio": false,
    "embedding": true
  },
  "index_types": [
    "dense",
    "sparse",
    "graph"
  ],
  "agent_hooks": [
    "summarize",
    "retrieve",
    "chain_reasoning"
  ],
  "chunks": [
    "chunk_00001.json",
    "chunk_00002.json",
    ...
  ]
}

🔹 Chunk File (chunk_00001.json)

Represents a unit of retrieval. Can be a memory, a doc fragment, a multimodal pair, etc.

chunk_00001.json
{
  "chunk_id": "00001",
  "type": "doc_fragment",
  "modality": [
    "text",
    "embedding"
  ],
  "content": "The GDPR stipulates that personal data must be processed lawfully...",
  "source": {
    "origin": "GDPR_FullText_EN.pdf",
    "section": "Article 5 - Principles"
  },
  "timestamp": "2023-08-22T11:45:12Z",
  "tags": [
    "GDPR",
    "data processing",
    "privacy"
  ],
  "embedding": [
    0.14,
    0.91,
    -0.55,
    ...
  ],
  "affordances": [
    "summarize",
    "cite",
    "retrieve"
  ],
  "version_info": {
    "chunk_hash": "sha256:abcd123...",
    "model_embedding": "OpenAI/text-embedding-3-large@2024-01",
    "format": "utf8/text"
  }
}

🧩 Episodic Memory Block (chunk_00192.json)

Useful for personal assistants, dev copilots, design bots...

chunk_00192.json
{
  "chunk_id": "00192",
  "type": "episodic_memory",
  "agent": "gpt-legal-aide",
  "user_context": {
    "persona": "in-house legal advisor",
    "session_intent": "understand data retention policies"
  },
  "summary": "User asked about retention periods for biometric data in smart meters.",
  "reflection": "Follow up on DPA guidelines in Czech Republic.",
  "embedding": [
    ...
  ],
  "related_chunks": [
    "00001",
    "00017"
  ],
  "created": "2025-06-14T20:14:22Z"
}

🌐 Graph Index File (graph_index.json)

Describes entity-entity, chunk-chunk relationships across modalities.

graph_index.json
{
  "nodes": [
    {
      "id": "GDPR",
      "type": "legal_concept"
    },
    {
      "id": "chunk_00001",
      "type": "text"
    },
    {
      "id": "chunk_00192",
      "type": "memory"
    },
    {
      "id": "UserLukas",
      "type": "user"
    }
  ],
  "edges": [
    {
      "from": "chunk_00001",
      "to": "GDPR",
      "rel": "mentions"
    },
    {
      "from": "chunk_00192",
      "to": "chunk_00001",
      "rel": "references"
    },
    {
      "from": "UserLukas",
      "to": "chunk_00192",
      "rel": "authored"
    }
  ]
}

🔧 Planned Tooling

We can prototype this using:

DuckDB

Locally index & query JSONL files as a pseudo-RAG engine

S3 Storage

Folder layout for deployable storage with versioning

Embedding Models

Local OpenAI-compatible embedding + mini-retriever (FAISS)

Browser WASM

Memory retrieval with WASM + embedding hashing (LlamaIndex)

🔥 What This Enables

Personalized, evolving memory

Agents that learn and remember across sessions

Multimodal memory-retrieval

GPTs that see, cite, and recall across formats

Graph-enhanced RAG

Enables reasoning, tool-use, and disambiguation

Time travel / version audit

Trace how knowledge or memory evolved

Plug-and-play RAG agents

Universal context sources, future-ready APIs

🎯 Next Steps

Here are a few possible next steps to take NeuroLake++ forward:

Local PoC

DuckDB + NeuroLake++-style JSON index → basic RAG prototype

Memory Builder

A tool to create episodic memory blocks from user sessions

S3 Storage Layout

Full design of how NeuroLake++ would live, grow, and update in S3

Agent SDK

Design function signatures for agents to remember(), reflect(), and query_memory()

Made with DeepSite LogoDeepSite - 🧬 Remix