The cognitive foundation for agent memory, multimodal RAG, and long-term adaptive knowledge
NeuroLake++ is not just a file format, but a foundation for cognitive tooling, RAG agents, and long-term adaptive memory.
manifest.json
)Describes all contents in a "NeuroLake Object Group" (e.g., an S3 prefix or ZIP archive), defines modality coverage, versioning, and affordances.
{
"neuro_lake_version": "0.4.1",
"description": "Memory & knowledge corpus for legal assistant GPT agent",
"modality_map": {
"text": true,
"image": true,
"pdf": true,
"audio": false,
"embedding": true
},
"index_types": [
"dense",
"sparse",
"graph"
],
"agent_hooks": [
"summarize",
"retrieve",
"chain_reasoning"
],
"chunks": [
"chunk_00001.json",
"chunk_00002.json",
...
]
}
chunk_00001.json
)Represents a unit of retrieval. Can be a memory, a doc fragment, a multimodal pair, etc.
{
"chunk_id": "00001",
"type": "doc_fragment",
"modality": [
"text",
"embedding"
],
"content": "The GDPR stipulates that personal data must be processed lawfully...",
"source": {
"origin": "GDPR_FullText_EN.pdf",
"section": "Article 5 - Principles"
},
"timestamp": "2023-08-22T11:45:12Z",
"tags": [
"GDPR",
"data processing",
"privacy"
],
"embedding": [
0.14,
0.91,
-0.55,
...
],
"affordances": [
"summarize",
"cite",
"retrieve"
],
"version_info": {
"chunk_hash": "sha256:abcd123...",
"model_embedding": "OpenAI/text-embedding-3-large@2024-01",
"format": "utf8/text"
}
}
chunk_00192.json
)Useful for personal assistants, dev copilots, design bots...
{
"chunk_id": "00192",
"type": "episodic_memory",
"agent": "gpt-legal-aide",
"user_context": {
"persona": "in-house legal advisor",
"session_intent": "understand data retention policies"
},
"summary": "User asked about retention periods for biometric data in smart meters.",
"reflection": "Follow up on DPA guidelines in Czech Republic.",
"embedding": [
...
],
"related_chunks": [
"00001",
"00017"
],
"created": "2025-06-14T20:14:22Z"
}
graph_index.json
)Describes entity-entity, chunk-chunk relationships across modalities.
{
"nodes": [
{
"id": "GDPR",
"type": "legal_concept"
},
{
"id": "chunk_00001",
"type": "text"
},
{
"id": "chunk_00192",
"type": "memory"
},
{
"id": "UserLukas",
"type": "user"
}
],
"edges": [
{
"from": "chunk_00001",
"to": "GDPR",
"rel": "mentions"
},
{
"from": "chunk_00192",
"to": "chunk_00001",
"rel": "references"
},
{
"from": "UserLukas",
"to": "chunk_00192",
"rel": "authored"
}
]
}
We can prototype this using:
Locally index & query JSONL files as a pseudo-RAG engine
Folder layout for deployable storage with versioning
Local OpenAI-compatible embedding + mini-retriever (FAISS)
Memory retrieval with WASM + embedding hashing (LlamaIndex)
Agents that learn and remember across sessions
GPTs that see, cite, and recall across formats
Enables reasoning, tool-use, and disambiguation
Trace how knowledge or memory evolved
Universal context sources, future-ready APIs
Here are a few possible next steps to take NeuroLake++ forward:
DuckDB + NeuroLake++-style JSON index → basic RAG prototype
A tool to create episodic memory blocks from user sessions
Full design of how NeuroLake++ would live, grow, and update in S3
Design function signatures for agents to remember(), reflect(), and query_memory()